|
Для удобства последующего преобразования дискретный сигнал подвергается кодированию (о кодировании см. в разделе Кодирование сигнала). Большинство кодов основано на системах счисления, причем использующих позиционный принцип образования числа, при котором значение каждой цифры зависит от ее положения в числе. Примером позиционной формы записи чисел является та, которой мы пользуемся (так называемая арабская форма чисел). Так, в числах 123 и 321 значения цифры 3, например, определяются ее положением в числе: в первом случае она обозначает три единицы (т.е. просто три), а во втором – три сотни (т.е. триста). Тогда полное число получается по формуле:  где l – количество разрядов числа, уменьшенное на 1, i – порядок разряда, m – основание системы счисления, ai – множитель, принимающий любые целочисленные значения от 0 до m-1, и соответствующий цифре i-го порядка числа. Например, для десятичного (m = 10) числа 345 его полное значение рассчитывается по формуле: 3*102 + 4*101 + 5*100 = 345. Римские числа являются примером полупозиционной системы образования числа: так, в числах IX и XI знак I обозначает в обоих случаях единицу (признак непозиционной системы), но, будучи расположенным слева от знака X (обозначающего десять), вычитается из десяти, а при расположении справа – прибавляется к десяти. В первом случае полное значение числа равно 9, во втором – 11. В современной информатике используются в основном три системы счисления (все – позиционные): двоичная, шестнадцатеричная и десятичная. Двоичная система счисления используется для кодирования дискретного сигнала, потребителем которого является вычислительная техника. Такое положение дел сложилось исторически, поскольку двоичный сигнал проще представлять на аппаратном уровне. В этой системе счисления для представления числа применяются два знака – 0 и 1. Шестнадцатеричная система счисления используется для кодирования дискретного сигнала, потребителем которого является хорошо подготовленный пользователь – специалист в области информатики. В такой форме представляется содержимое любого файла, затребованное через интегрированные оболочки операционной системы, например, средствами Norton Commander в случае MS DOS. Используемые знаки для представления числа – десятичные цифры от 0 до 9 и буквы латинского алфавита – A, B, C, D, E, F. Десятичная система счисления используется для кодирования дискретного сигнала, потребителем которого является так называемый конечный пользователь – неспециалист в области информатики (очевидно, что и любой человек может выступать в роли такого потребителя). Используемые знаки для представления числа – цифры от 0 до 9. Соответствие между первыми несколькими натуральными числами всех трех систем счисления представлено в таблице перевода: | Десятичная система | Двоичная система | Шестнадцатеричная система | | 0 | 0 | 0 | | 1 | 1 | 1 | | 2 | 10 | 2 | | 3 | 11 | 3 | | 4 | 100 | 4 | | 5 | 101 | 5 | | 6 | 110 | 6 | | 7 | 111 | 7 | | 8 | 1000 | 8 | | 9 | 1001 | 9 | | 10 | 1010 | A | | 11 | 1011 | B | | 12 | 1100 | C | | 13 | 1101 | D | | 14 | 1110 | E | | 15 | 1111 | F | | 16 | 10000 | 10 | Для различения систем счисления, в которых представлены числа, в обозначение двоичных и шестнадцатеричных чисел вводят дополнительные реквизиты: - для двоичных чисел – нижний индекс справа от числа в виде цифры 2 или букв В либо b (binary – двоичный), либо знак B или b справа от числа. Например, 1010002 = 101000b = 101000B = 101000B = 101000b;
- для шестнадцатеричных чисел - нижний индекс справа от числа в виде числа 16 или букв H либо h (hexadecimal – шестнадцатеричный), либо знак H или h справа от числа. Например, 3AB16 = 3ABH = 3ABh = 3ABH = 3ABh.
Для перевода чисел из одной системы счисления в другую существуют определенные правила. Они различаются в зависимости от формата числа – целое или правильная дробь. Для вещественных чисел используется комбинация правил перевода для целого числа и правильной дроби.
|