|
Появление предпосылок искусственного интеллекта (период с 1943 года по 1955 год)
 Уолтер Питтс Первая работа, которая теперь по общему признанию считается относящейся к искусственному интеллекту, была выполнена Уорреном Мак-Каллоком и Уолтером Питтсом. Они черпали вдохновение из трех источников: знание основ физиологии и назначения нейронов в мозгу; формальный анализ логики высказываний, взятый из работ Рассела и Уайтхеда; а также теория вычислений Тьюринга.
Мак-Каллок и Питтс предложили модель, состоящую из искусственных нейронов, в которой каждый нейрон характеризовался как находящийся во «включенном» или «выключенном» состоянии, а переход во «включенное» состояние происходил в ответ на стимуляцию достаточного количества соседних нейронов.
Состояние нейрона рассматривалось как «фактически эквивалентное высказыванию, в котором предлагается адекватное количество стимулов». Работы этих ученых показали, например, что любая вычислимая функция может быть вычислена с помощью некоторой сети из соединенных нейронов и что все логические связки ("И", "ИЛИ", "НЕ" и т.д.) могут быть реализованы с помощью простых сетевых структур.
Кроме того, Мак-Каллок и Питтс выдвинули предположение, что сети, структурированные соответствующим образом, способны к обучению. Дональд Хебб продемонстрировал простое правило обновления для модификации количества соединений между нейронами. Предложенное им правило, называемое теперь правилом хеббовского обучения, продолжает служить основой для моделей, широко используемых и в наши дни.
 Уоррен Мак-Каллок Два аспиранта факультета математики Принстонского университета, Марвин Минский и Дин Эдмондс, в 1951 году создали первый сетевой компьютер на основе нейронной сети. В этом компьютере, получившем название Snare, использовалось 3000 электронных ламп и дополнительный механизм автопилота с бомбардировщика В-24 для моделирования сети из 40 нейронов. Аттестационная комиссия, перед которой Минский защищал диссертацию доктора философии, выразила сомнение в том, может ли работа такого рода рассматриваться как математическая, на что фон Нейман, по словам современников, возразил: «Сегодня — нет, но когда-то будет». В дальнейшем Минский доказал очень важные теоремы, показывающие, с какими ограничениями должны столкнуться исследования в области нейронных сетей.
Кроме того, можно привести большое количество примеров других ранних работ, которые можно охарактеризовать как относящиеся к искусственному интеллекту, но именно Алан Тьюринг впервые выразил полное представление об искусственном интеллекте в своей статье Computing Machinery and Intelligence, которая была опубликована в 1950 году. В этой статье он описал тест Тьюринга, принципы машинного обучения, генетические алгоритмы и обучение с подкреплением.
Рождение искусственного интеллекта (1956 год)
В Принстонском университете проводил свои исследования еще один авторитетный специалист в области искусственного интеллекта, Джон Маккарти. После получения ученой степени Маккарти перешел в Дартмутский колледж, который и стал официальным местом рождения этой области знаний. Маккарти уговорил Марвина Минского, Клода Шеннона и Натаниэля Рочестера, чтобы они помогли ему собрать всех американских исследователей, проявляющих интерес к теории автоматов, нейронным сетям и исследованиям интеллекта.
|
Они организовывали двухмесячный семинар в Дартмуте летом 1956 года. Всего на этом семинаре присутствовали 10 участников, включая Тренчарда Мура из Принстонского университета, Артура Самюэла из компании IBM, а также Рея Соломонова и Оливера Селфриджа из Массачусетсского технологического института (Massachussets Institute of Technlogies — MIT).
Два исследователя из технологического института Карнеги, Аллен Ньюэлл и Герберт Саймон, буквально монополизировали все это представление. Тогда как другие могли лишь поделиться своими идеями и в некоторых случаях показать программы для таких конкретных приложений, как шашки, Ньюэлл и Саймон уже могли продемонстрировать программу, проводящую рассуждения, Logic Theorist (LT), или логик-теоретик, в отношении которой Саймон заявил: «Мы изобрели компьютерную программу, способную мыслить в нечисловых терминах и поэтому решили почтенную проблему о соотношении духа и тела».
Вскоре после этого семинара программа показала свою способность доказать большинство теорем, труда Рассела и Уайтхеда Principia Mathematica. Сообщали, что Рассел пришел в восторг, когда Саймон показал ему, что эта программа предложила доказательство одной теоремы, более короткое, чем в Principia. Редакторы Journal of Symbolic Logic оказались менее подверженными эмоциям; они отказались принимать статью, в качестве соавторов которой были указаны Ньюэлл, Саймон и программа Logic Theorist.
Дартмутский семинар не привел к появлению каких-либо новых крупных открытий, но позволил познакомиться всем наиболее важным деятелям в этой научной области. Они, а также их студенты и коллеги из Массачусетсского технологического института, Университета Карнеги-Меллона, Станфордского университета и компании IBM занимали ведущее положение в этой области в течение следующих 20 лет.
Возможно, дольше всего сохранившимся результатом данного семинара было соглашение принять новое название для этой области, предложенное Маккарти, — искусственный интеллект. Возможно, лучше было бы назвать эту научную область «вычислительная рациональность», но за ней закрепилось название «искусственный интеллект».
Анализ предложений по тематике докладов для Дартмутского семинара позволяет понять, с чем связана необходимость преобразовать искусственный интеллект в отдельную область знаний.
Почему нельзя было бы публиковать все работы, выполненные в рамках искусственного интеллекта, под флагом теории управления, или исследования операций, или теории решений, которые в конечном итоге имеют цели, аналогичные искусственному интеллекту? Или почему искусственный интеллект не рассматривается как область математики?
Ответом на эти вопросы, вопервых, является то, что искусственный интеллект с самого начала впитал идею моделирования таких человеческих качеств, как творчество, самосовершенствование и использование естественного языка. Эти задачи не рассматриваются ни в одной из указанных областей. Во-вторых, еще одним ответом является методология.
Искусственный интеллект — это единственная из перечисленных выше областей, которая, безусловно, является одним из направлений компьютерных наук (хотя в исследовании операций также придается большое значение компьютерному моделированию), кроме того, искусственный интеллект — это единственная область, в которой предпринимаются попытки создания машин, действующих автономно в сложной, изменяющейся среде.
|