Главная arrow Предыстория arrow ИИ как наука
Как начинался компьютер
Компьютерная революция
Двоичный код
Разработки военных лет
Интегральные микросхемы
Микрокомпьютер
Персоны
Сеть
Язык компьютера
Развитие ПО
Гибкие системы
Средства разработки
Информатика
Вычислительная наука
Операционные системы
Искусственный интеллект
Предыстория
Поиск
Знания и рассуждения
Логика
Робототехника
 

 
Искусственный интеллект как наука Печать
В последние годы произошла буквально революция как в содержании, так и в методологии работ в области искусственного интеллекта. В настоящее время гораздо чаще встречаются работы, которые основаны на существующих теориях, а не содержат описания принципиально новых открытий; утверждения, изложенные в этих работах, основаны на строгих теоремах или надежных экспериментальных свидетельствах, а не на интуиции; при этом обоснованность сделанных выводов подтверждается на реальных практических приложениях, а не на игрушечных примерах.

Появление искусственного интеллекта отчасти стало результатом усилий по преодолению ограничений таких существующих научных областей, как теория управления и статистика, но теперь искусственный интеллект включил в себя и эти области.

В одной из своих работ Дэвид Макаллестер выразил эту мысль следующим образом. В ранний период развития искусственного интеллекта казалось вероятным, что в результате появления новых форм символических вычислений, например фреймов и семантических сетей, основная часть классической теории станет устаревшей.

Это привело к определенной форме самоизоляции, характеризовавшейся тем, что искусственный интеллект в значительной степени отделился от остальной части компьютерных наук. В настоящее время такой изоляционизм преодолен. Появилось признание того, что машинное обучение не следует отделять от теории информации, что проведение рассуждений в условиях неопределенности нельзя изолировать от стохастического моделирования, что поиск не следует рассматривать отдельно от классической оптимизации и управления и что автоматизированное формирование рассуждений не должно трактоваться как независимое от формальных методов и статистического анализа.

С точки зрения методологии искусственный интеллект наконец-то твердо перешел на научные методы. Теперь, для того чтобы быть принятыми, гипотезы должны подвергаться проверке в строгих практических экспериментах, а значимость результатов должна подтверждаться данными статистического анализа. Кроме того, в настоящее время имеется возможность воспроизводить эксперименты с помощью Internet, а также совместно используемых репозитариев тестовых данных и кода.

Именно по этому принципу развивается область распознавания речи. В 1970-е годы было опробовано широкое разнообразие различных архитектур и подходов. Многие из них оказались довольно надуманными и недолговечными и были продемонстрированы только на нескольких специально выбранных примерах. В последние годы доминирующее положение в этой области заняли подходы, основанные на использовании скрытых марковских моделей (Hidden Markov Model — НММ).

Описанное выше современное состояние искусственного интеллекта подтверждается двумя особенностями моделей НММ. Во-первых, они основаны на строгой математической теории. Это позволяет исследователям речи использовать в своей работе математические результаты, накопленные в других областях за несколько десятилетий. Во-вторых, они получены в процессе обучения программ на крупном массиве реальных речевых данных. Это гарантирует обеспечение надежных показателей производительности, а в строгих слепых испытаниях модели НММ неизменно улучшают свои показатели.

Технология распознавания речи и связанная с ней область распознавания рукописных символов уже совершают переход к созданию широко применяемых индустриальных и потребительских приложений.

Нейронные сети также следуют этой тенденции. Основная часть работ по нейронных сетям, осуществленных в 1980-х годах, была проведена в попытке оценить масштабы того, что должно быть сделано, а также понять, в чем нейронные сети отличаются от «традиционных» методов. В результате использования усовершенствованной методологии и теоретических основ исследователи в этой области достигли такого уровня понимания, что теперь нейронные сети стали сопоставимыми с соответствующими технологиями из области статистики, распознавания образов и машинного обучения, а наиболее перспективная методология может быть применена к каждому из этих приложений.

В результате этих разработок была создана так называемая технология анализа скрытых закономерностей в данных (data mining), которая легла в основу новой, быстро растущей отрасли информационной индустрии.

Знакомство широких кругов специалистов с книгой Джуди Перла Probabilistic Reasoning in Intelligent Systems привело к признанию важности теории вероятностей и теории решений для искусственного интеллекта, что последовало за возрождением интереса к этой теме, вызванной статьей Питера Чизмана In Defense of Probability.

Для обеспечения эффективного представления неопределенных знаний и проведения на их основе строгих рассуждений были разработаны формальные средства байесовских сетей. Этот подход позволил преодолеть многие проблемы систем вероятностных рассуждений, возникавшие в 1960-1970-х гг.; теперь он стал доминирующим в таких направлениях исследований искусственного интеллекта, как формирование рассуждений в условиях неопределенности и экспертные системы.

Данный подход позволяет организовать обучение на основе опыта и сочетает в себе лучшие достижения классического искусственного интеллекта и нейронных сетей.

В работах Джуди Перла, а также Эрика Горвица и Дэвида Хекермана была развита идея нормативных экспертных систем. Таковыми являются системы, которые действуют рационально, в соответствии с законами теории решений, а не пытаются имитировать мыслительные этапы в работе людей - экспертов.

Операционная система Microsoft Windows включает несколько нормативных диагностических экспертных систем, применяемых для устранения нарушений в работе.

Аналогичные бескровные революции произошли в области робототехники, компьютерного зрения и представления знаний. Благодаря лучшему пониманию исследовательских задач и свойств, обусловливающих их сложность, в сочетании с всевозрастающим усложнением математического аппарата, удалось добиться формирования реальных планов научных исследований и перейти к использованию более надежных методов.

Но во многих случаях формализация и специализация привели также к фрагментации направлений, например, такие темы, как машинное зрение и робототехника, все больше отделяются от «основного направления» работ по искусственному интеллекту. Снова добиться объединения этих разрозненных областей можно на основе единого взгляда на искусственный интеллект как науку проектирования рациональных агентов.