Главная arrow Предыстория arrow Компьютерное зрение
Как начинался компьютер
Компьютерная революция
Двоичный код
Разработки военных лет
Интегральные микросхемы
Микрокомпьютер
Персоны
Сеть
Язык компьютера
Развитие ПО
Гибкие системы
Средства разработки
Информатика
Вычислительная наука
Операционные системы
Искусственный интеллект
Предыстория
Поиск
Знания и рассуждения
Логика
Робототехника
 

 
Компьютерное зрение Печать

Компьютерное зрение это теория и технология создания машин, которые могут видеть. Как научная дисциплина, компьютерное зрение относится к теории и технологии создания искусственных систем, которые получают информацию из изображений. Видеоданные могут быть представлены множеством форм, таких как видеопоследовательность, изображения с различных камер или трехмерными данными с медицинского сканера.

Как технологическая дисциплина, компьютерное зрение стремится применить теории и модели компьютерного зрения к созданию систем компьютерного зрения. Примерами применения таких систем могут быть:

  • Системы управления процессами (промышленные роботы, автономные транспортные средства)
  • Системы видеонаблюдения
  • Системы организации информации (например, для индексации баз данных изображений)
  • Системы моделирования объектов или окружающей среды (анализ медицинских изображений, топографическое моделирование)
  • Системы взаимодействия (например, устройства ввода для системы человеко-машинного взаимодействия)

Компьютерное зрение также может быть описано как дополнение (но не обязательно противоположность) биологическому зрению. В биологии изучается зрительное восприятие человека и различных животных, в результате чего создаются модели работы таких систем в терминах физиологических процессов. Компьютерное зрение, с другой стороны, изучает и описывает системы компьютерного зрения, которые выполнены аппаратно или программно. Междисциплинарный обмен между биологическим и компьютерным зрением оказался весьма продуктивным для обеих научных областей. Подразделы компьютерного зрения включают воспроизведение действий, обнаружение событий, слежение, распознавание образов, восстановление изображений.

Область компьютерного зрения может быть охарактеризована как молодая и разнообразная. Даже хотя существуют более ранние работы, можно сказать, что только с конца 1970-х началось интенсивное изучение этой проблемы, когда компьютеры смогли управлять обработкой больших наборов данных, таких как изображения. Однако, эти исследования обычно начинались с других различных областей, и, следовательно, нет стандартной формулировки проблемы компьютерного зрения. Также, и это даже более важно, нет стандартной формулировки того, как должна решаться проблема компьютерного зрения. Вместо этого, существует масса методов для решения различных строго определенных задач компьютерного зрения, где методы часто зависят от задач и редко могут быть обобщены для широкого круга применения. Многие из методов и приложений все ещё находятся в стадии фундаментальных исследований, но все большее число методов находит применение в коммерческих продуктах, где они часто составляют часть более большой системы, которая может решать сложные задачи (например, в области медицинских изображений или измерения и контроля качества в процессах изготовления). В большинстве практических применений компьютерного зрения компьютеры предварительно запрограммированны для решения отдельных задач, но методы, основанные на знаниях, становятся все более общими.

Важную часть в области искусственного интеллекта занимает автоматическое планирование или принятие решений в системах, которые могут выполнять механические действия, такие как перемещение робота через некоторую среду. Этот тип обработки обычно нуждается в входных данных, предоставляемых системами компьютерного зрения, действующими как видеосенсор и предоставляющими высокоуровневую информацию о среде и роботе. Другие области, которые иногда описываются как принадлежащие к искусственному интеллекту и которые используются относительно компьютерного зрения, это распознавание образов и обучающие методы. В результате компьютерное зрение иногда рассматривается как часть области искусственного интеллекта или области компьютерных наук вообще.

Физика является другой наукой, которая тесно связана с компьютерным зрением. Значительная часть компьютерного зрения имеет дело с методами, которые требуют досконального понимания процесса, в котором электромагнитное излучение, обычно в области видимого или инфракрасного диапазона, отражается поверхностью объектов и измеряется датчиком изображения, чтобы получить видеоданные. Этот процесс основан на оптике и физике твердого тела. Более сложные датчики изображения даже требуют знания квантовой механики для полного понимания процесса формирования изображения. Также, различные проблемы измерений в физике могут быть разрешены, используя компьютерное зрение (например, относящиеся к движению в жидкостях). Поэтому, компьютерное зрение может рассматриваться как расширение физики.

Третья область науки, которая играет важную роль это нейробиология, особенно изучение систем биологического зрения. За последнее столетие, были проведены большие исследования глаз, нейронов и структур мозга, относящихся к обработке визуальных раздражителей как у человека так и у различных животных. Это привело к грубому, к тому же сложному, описанию того, как работают "реальные" системы зрения, что помогло решить некоторые задачи. Результаты этих исследований привели к созданию искусственных систем, имитирующих работу и функционирование аналогичных биологических систем на различных уровнях сложности. Также, некоторые методы изучения, разработанные в области компьютерного зрения, обязаны своему происхождению биологии.

Еще одной областью, связанной с компьютерным зрением, является обработка сигналов. Многие методы обработки одномерных сигналов, обычно временных сигналов, могут быть естественным путем расширены для обработки двумерных или многомерных сигналов в компьютерном зрении. Однако, из-за своеобразной природы изображений, существует много методов, разработанных в области компьютерного зрения, не имеющих аналогов в области обработки одномерных сигналов. Особым свойством этих методов является их нелинейность, что, вместе с многомерностью сигнала, делает соответствующую подобласть в обработке сигналов частью области компьютерного зрения.