Главная arrow Вычислительная наука arrow Классификация компьютеров
Как начинался компьютер
Компьютерная революция
Двоичный код
Разработки военных лет
Интегральные микросхемы
Микрокомпьютер
Персоны
Сеть
Язык компьютера
Развитие ПО
Гибкие системы
Средства разработки
Информатика
Вычислительная наука
Операционные системы
Искусственный интеллект
Предыстория
Поиск
Знания и рассуждения
Логика
Робототехника
 

 
Классификация компьютеров Печать

Массовость использования ПК, огромные рекламные усилия производителей и коммерсантов не должны заслонить тот факт, что кроме ПК есть и другие, многократно более мощные, вычислительные системы Всегда есть круг задач, для которых недостаточно существующих вычислительных мощностей и которые столь важны, что для их решения не жалко никаких средств. Это, например, может быть связано с обороноспособностью государства, решением сложнейших научно-технических задач, созданием и поддержкой гигантских банков данных. В настоящее время лишь немногие государства способны производить, так называемые, супер-ЭВМ – компьютеры, на фоне которых “персоналки” кажутся игрушками. Впрочем, сегодня ПК часто становится терминалом – конечным звеном в гигантских телекоммуникационных системах, в которых решением непосильных для ПК задач обработки информации занимаются более мощные ЭВМ.

Схема классификации компьютеров, исходящая из их производительности, размеров и функционального назначения, приведена на рис. 9. Следует отметить, что вопрос об отнесении конкретного компьютера к одной из категорий этой схемы может иметь неоднозначный ответ, привязанный к конкретной исторической обстановке или доминирующему поколению ЭВМ.

 Классификация ЭВМ

Рис. 9. Классификация ЭВМ

Место супер-ЭВМ в этой иерархии уже обсуждалось. Определить супер-ЭВМ можно лишь относительно: это самая мощная вычислительная система, существующая в соответствующий исторический период. В настоящее время наиболее известны мощные супер-ЭВМ “Cray” и “IBM SP2” (США). Модель “Сгау-3”, выпускаемая с начала 90-х годов на основе принципиально новых микроэлектронных технологий, является 16-процессорной машиной с быстродействием более 10 млрд. операций в секунду (по другим данным 16) над числами с “плавающей точкой” (т.е. длинными десятичными числами; такие операции гораздо более трудоемки, чем над целыми числами); в модели CS 6400 число процессоров доведено до 64. Супер-ЭВМ требуют особого температурного режима, зачастую водяного охлаждения (или даже охлаждения жидким азотом). Их производство по масштабам несопоставимо с производством компьютеров других классов (так, в 1995 г. корпорацией “Cray” было выпущено всего около 70 таких компьютеров).

Большие ЭВМ более доступны, чем “супер”. Они также требуют специального помещения, иногда весьма немалого, поддержания жесткого температурного режима, высококвалифицированного обслуживания. Такую ЭВМ в 80-е годы мог себе позволить завод, даже крупный вуз. Классическим примером служат выпускавшиеся еще недавно в США машины серии IBM 370 и их отечественные аналоги ЕС ЭВМ. Большие ЭВМ используются для производства сложных научно-технических расчетов, математического моделирования, а также в качестве центральных машин в крупных автоматизированных системах управления. Впрочем, скорость прогресса в развитии вычислительной техники такова, что возможности больших ЭВМ конца 80-х годов практически по всем параметрам перекрыты наиболее мощными “супер-мини” середины 90-х. Несмотря на это, выпуск больших машин продолжается, хотя цена одной машины может составлять несколько десятков миллионов долларов.

Мини-ЭВМ появились в начале 70-х годов. Их традиционное использование -либо для управления технологическими процессами, либо в режиме разделения времени в качестве управляющей машины небольшой локальной сети. Мини-ЭВМ используются, в частности, для управления станками с ЧПУ, другим оборудованием. Среди них выделяются “супер-мини”, имеющие характеристики, сравнимые с характеристиками больших машин (например, в 80-х годах таковыми считалось семейство VAX-11 фирмы DEC и его отечественные аналоги – СМ 1700 и др.).

Микро-ЭВМ обязаны своим появлением микропроцессорам. Среди них выделяют многопользовательские, оборудованные многими выносными терминалами и работающие в режиме разделения времени; встроенные, которые могут управлять станком, какой-либо подсистемой автомобиля или другого устройства (в том числе и военного назначения), будучи его малой частью. Эти встроенные устройства (их часто называют контроллерами) выполняются в виде небольших плат, не имеющих рядом привычных для пользователя компьютера внешних устройств.

Термин “рабочая станция” используется в нескольких, порой несовпадающих, смыслах. Так, рабочей станцией может быть мощная микро-ЭВМ, ориентированная на специализированные работы высокого профессионального уровня, которую нельзя отнести к персональным компьютерам хотя бы в силу очень высокой стоимости. Например, это графические рабочие станции для выполнения работ по автоматизированному проектированию или для высокоуровневой издательской деятельности. Рабочей станцией могут называть и компьютер, выполняющий роль хост-машины в подузле глобальной вычислительной сети. Компьютеры фирм “Sun Microsystems”, “Hewlett-Packard”, стоимостью в десятки раз большей, чем персональные компьютеры, являются одно- или многопроцессорными машинами с огромным (по меркам ПК) ОЗУ, мультипроцессорной версией операционной системы, несколькими CD ROM- накопителями и т.д.

Нельзя, наконец, не сказать несколько слов об устройствах, приносящих большую пользу и также являющихся ЭВМ (поскольку они чаще всего и электронные, и вычислительные),-аналоговых вычислительных машинах (АВМ). Они уже полвека хотя и находятся на обочине развития современной вычислительной техники, но неизменно выживают. Известны системы, в которых АВМ сопрягаются с цифровыми, значительно увеличивая эффективность решения задач в целом. Основное в АВМ – они не цифровые, обрабатывают информацию, представленную не в дискретной, а в непрерывной форме (чаще всего в форме электрических токов). Их главное достоинство – способность к математическому моделированию процессов, описываемых дифференциальными уравнениями (порой очень сложных) в реальном масштабе времени. Недостаток – относительно низкая точность получаемых решений и неуниверсальность.