Главная arrow Микрокомпьютер arrow Виды топливных элементов
Как начинался компьютер
Компьютерная революция
Двоичный код
Разработки военных лет
Интегральные микросхемы
Микрокомпьютер
Персоны
Сеть
Язык компьютера
Развитие ПО
Гибкие системы
Средства разработки
Информатика
Вычислительная наука
Операционные системы
Искусственный интеллект
Предыстория
Поиск
Знания и рассуждения
Логика
Робототехника
 

 
Виды топливных элементов Печать

Видов топливных элементов великое множество, однако мы постараемся вкратце остановиться на наиболее распространенных из них.

Щелочные топливные элементы (AFC)

Алкалайновые или щелочные топливные элементы, называемые также как элементы Бэкона в честь их британского "отца", являются одной из наиболее хорошо разработанной технологией топливных элементов. Именно эти устройства помогли человеку ступить на Луну. Вообще NASA использует топливные элементы этого типа уже с середины 60-ых годов прошлого века. AFC потребляют водород и чистый кислород, производя питьевую воду, тепло и электричество. Во многом благодаря тому, что эта технология прекрасно отработана, у нее один из наивысших показателей эффективности среди подобных систем (потенциал около 70%).

Однако у этой технологии есть и свои недостатки. Из-за специфики использования в качестве электролита жидкого щелочного вещества, которое не блокирует углекислый газ, возможно вступление в реакцию гидроксида калия (один из вариантов используемого электролита) с этим составляющим обычного воздуха. В результате может получиться ядовитое соединение карбонад калия. Во избежание этого необходимо использовать либо чистый кислород, либо производить очистку воздуха от углекислого газа. Естественно, это сказывается на стоимости подобных устройств. Однако не смотря даже на это, AFC являются самыми дешевыми в производстве топливными элементами, доступными сегодня.

Прямой борогидридный топливные элементы (DBFC)

Этот подтип щелочных топливных элементов использует в качестве топлива борогидрид натрия. Однако в отличие от обычных AFC на водороде, у этой технологии есть одно существенное преимущество - отсутствие риска получения ядовитых соединений после контакта с углекислым газом. Однако продуктом его реакции является вещество бура, широко используемое в моющих средствах и мыле. Бура относительно не токсична.

DBFC можно сделать даже дешевле традиционных топливных элементов, поскольку они не требуют дорогих платиновых катализаторов. К тому же они обладают большей энергетической плотностью. Подсчитано, что производства килограмма борогидрида натрия обходится в $50, но если организовать его массовое производство и наладить переработку буры, то эту планку можно снизить в 50 раз.

Топливные элементы на металлических гидридах (MHFC)

Этот подкласс щелочных топливных элементов в настоящее время активно изучается. Особенностью этих устройств является способность химически хранить водород внутри топливного элемента. Такой же способностью обладает и прямой борогидридный топливный элемент, но в отличие от него MHFC заполняется чистым водородом.

Среди отличительных характеристик этих топливных элементов можно выделить следующие:

  • способность перезаряжаться от электрической энергии;
  • работа при низких температурах - до -20°C;
  • длительный срок хранения;
  • быстрый "холодный" старт;
  • способность некоторое время работать без внешнего источника водорода (на время замены топлива).

Не смотря на то, что многие компании работают над созданием массовых MHFC, пока эффективность прототипов недостаточно высока в сравнении с конкурирующими технологиями. Один из наилучших показателей плотности тока для этих топливных элементов составляет 250 миллиампер на квадратный сантиметр, при этом обычные топливные элементы стандарта PEMFC обеспечивают плотность тока в 1 ампер на квадратный сантиметр.

Электро-гальванические топливные элементы (EGFC)

Химическая реакция в EGFC проходит при участии гидроксида калия и кислорода. Это создает электрический ток между свинцовым анодом и позолоченным катодом. Напряжение, выдаваемое электро-гальваническим топливным элементом, прямо пропорционально количеству кислорода. Эта особенность позволила EGFC найти широкое применение в качестве устройств проверки концентрации кислорода в аквалангах и медицинском оборудовании. Но именно благодаря этой зависимости у топливных элементов на гидроксиде калия весьма ограниченный срок эффективной работы (пока концентрация кислорода велика).

Первые сертифицированные устройства проверки концентрации кислорода на EGFC стали массово доступны в 2005 году, но тогда не снискали большой популярности. Выпущенная спустя два года существенно модифицированная модель была гораздо успешнее и даже получила приз за "инновацию" на специализированной выставке дайверов в Флориде. В настоящее время их используют такие организации как NOAA (National Oceanic and Atmospheric Administration) и DDRC (Diving Diseases Research Centre).

Прямые топливные элементы на муравьиной кислоте (DFAFC)

Эти топливные элементы являются подтипом PEMFC-устройств с прямой подачей муравьиной кислоты. Благодаря своим специфическим особенностям эти топливные элементы имеют большие шансы в будущем стать главным средством питания такой портативной электроники, как ноутбуки, сотовые телефоны и т.д.

Как и метанол, муравьиную кислоту напрямую подают в топливный элемент без специальной стадии очистки. Хранить это вещество также намного безопаснее, чем, например, водород, к тому же не требуется обеспечивать какие-либо специфические условия хранения: муравьиная кислота является жидкостью при нормальной температуре. Более того, у этой технологии есть и два неоспоримых преимущества перед прямыми метаноловыми топливными элементами. Во-первых, в отличие от метанола, муравьиная кислота не просачивается через мембрану. Поэтому эффективность DFAFC по определению должна быть выше. Во-вторых, в случае разгерметизации, муравьиная кислота не столь опасна (метанол может вызывать слепоту, а при сильной дозировке и смерть).

Что интересно, до недавнего времени многие ученые не рассматривали эту технологию как имеющую практическое будущее. Причиной, побудившей исследователей на многие годы "поставить крест" на муравьиной кислоте, было высокое электрохимическое перенапряжение, приводившее к существенным электрическим потерям. Но результаты недавних экспериментов показали, что причина такой неэффективности была в использовании платины в качестве катализатора, которая традиционно широко применялась для этих целей в топливных элементах. После того, как ученые из Иллинойсского Университета провели ряд опытов с другими материалами, оказалось, что в случае применения палладия в качестве катализатора продуктивность DFAFC выше, чем у эквивалентных прямых метанольных топливных элементов. В настоящее время правами на эту технологию обладает американская компания Tekion, предлагающая линейку своих продуктов Formira Power Pack для устройств микроэлектроники. Эта система представляет собой "дуплекс", состоящий из аккумуляторной батареи и собственно топливного элемента. После того, как запас реагентов в картридже, заряжающем батарейку, иссякает, пользователь просто меняет его на новый. Таким образом он становится полностью независим от "розетки". Согласно обещаниям производителя, время между зарядами увеличится вдвое при том, что технология обойдется лишь на 10-15% дороже обычных батареек. Единственным серьезным препятствием на пути этой технологии может стать то, что ее поддерживает компания средней руки и ее попросту могут "завалить" конкуренты большего масштаба, представляющие свои технологии, которые могут даже уступать DFAFC по ряду параметров.

Прямые метанольные топливные элементы (DMFC)

Эти топливные элементы являются подвидом устройств с протонообменной мембраной. В них используется метанол, заправляемый в топливный элемент без дополнительной очистки. При этом метиловый спирт гораздо проще хранить и он не взрывоопасен (хотя он горюч и может вызывать слепоту). При этом у метанола энергетическая емкость существенно выше, чем у сжатого водорода.

Однако из-за того, что метанол способен просачиваться через мембрану, эффективность DMFC при больших объемах топлива невелика. И хотя по этой причине они не годятся для транспорта и крупных установок, эти устройства прекрасно подходят на роль заменителей аккумуляторных батарей на мобильных устройствах.

Топливные элементы на обработанном метаноле (RMFC)

Топливные элементы на обработанном метаноле отличаются от DMFC лишь тем, что в них метанол на стадии предшествующей выработке электричества преобразуется в водород и углекислый газ. Это происходит в специальном устройстве именуемом топливный процессор. После этой предварительной стадии (реакция осуществляется при температуре выше 250°C), водород ступает в реакцию окисления, в результате которой образуется вода и вырабатывается электричество.

Использование метанола в RMFC обусловлено тем, что он является природным носителем водорода, и при достаточно низкой температуре (по сравнению с другими веществами) может быть разложен на водород и углекислый газ. Поэтому эта технология и более совершена, чем DMFC. Топливные элементы на обработанном метаноле позволяют добиться большей эффективности, их компактности и работы при температурах ниже нуля.

Прямые этанольные топливные элементы (DEFC)

Еще один представитель класса топливных элементов с протонообменной решеткой. Как следует из названия, этанол поступает в топливный элемент минуя стадии дополнительной очистки или разложения на более простые вещества. Первый плюс этих устройств - это использование этилового спирта вместо токсичного метанола. Это означает, что не нужно вкладывать огромные деньги в налаживание этого топлива.

Энергетическая плотность спирта приблизительно на 30% выше, чем у метанола. К тому же его можно получать в больших количествах из биомассы. В целях снижения стоимости топливных элементов на этаноле, активно ведется поиск альтернативного материала катализатора. Платина, традиционно используемая в топливных элементах для этих целей, слишком дорога и является существенным препятствием на пути массового внедрения этих технологий. Решением этой проблемы могут стать катализаторы из смеси железа, меди и никеля, демонстрирующие в экспериментальных системах впечатляющие результаты.

Цинково-воздушные топливные элементы (ZAFC)

ZAFC для производства электрической энергии используют окисление цинка кислородом из воздуха. Эти топливные элементы недороги в производстве и обеспечивают достаточно высокую плотность энергии. В настоящее время их используют в слуховых аппаратах и экспериментальных электрических автомобилях.

Со стороны анода находится смесь частичек цинка с электролитом, а со стороны катода вода и кислород из воздуха, которые реагируют друг с другом и образуют гидроксил (его молекула представляет собой атом кислорода и атом водорода, между которыми существует ковалентная связь). В результате реакции гидроксила с цинковой смесью высвобождаются электроны, идущие к катоду. Максимальное напряжение, которое выдается такими топливными элементами, - это 1.65 В, но, как правило, его искусственно снижают до 1.4–1.35 В, ограничивая доступ воздуха в систему. Конечными продуктами этой электрохимической реакции являются оксид цинка и вода.

Возможно использование этой технологии, как в батарейках (без перезарядки), так и в топливных элементах. В последнем случае, камера со стороны анода очищается и заполняется вновь цинковой пастой. В целом, технология ZAFC зарекомендовали себя как простые и надежные элементы питания. Их неоспоримым плюсом является возможность управлять реакцией лишь регулируя подачу воздуха в топливный элемент. Многие исследователи рассматривают цинково-воздушные топливные элементы в качестве будущего главного источника питания электрических транспортных средств.

Микробные топливные элементы (MFC)

Идея использовать бактерии на благо человечества не нова, хотя до претворения этих задумок в жизнь дошло недавно. В настоящее время активно изучается вопрос коммерческого использования биотехнологий для производства различных продуктов (например, выработка водорода из биомассы), нейтрализации вредных веществ и производства электроэнергии. Микробные топливные элементы, еще именуемые биологическими, представляют собой биологическую электрохимическую систему, вырабатывающую электрический ток благодаря использованию бактерий. Эта технология основана на катаболизме (разложение сложной молекулы на более простую с выделением энергии) таких веществ как глюкоза, ацетат (соль уксусной кислоты), бутират (соль масляной кислоты) или сточные воды. Благодаря их окислению, высвобождаются электроны, которые передаются на анод, после чего по проводнику выработанный электрический ток поступает к катоду.

В таких топливных элементах как правило используются медиаторы, улучшающие проходимость электронов. Проблема в том, что вещества, играющие роли медиаторов, дороги и токсичны. Однако, в случае использования электрохимически активных бактерий, нужда в медиаторах отпадает. Такие "без медиаторные" микробные топливные элементы начали создавать совсем недавно и потому, пока далеко не все их свойства хорошо изучены.

Несмотря на препятствия, которые MFC еще только предстоит преодолеть, у этой технологии огромный потенциал. Во-первых, "топливо" найти не представляет особого труда. И более того, сегодня вопрос очистки сточных вод и утилизации многих отходов стоит очень остро. Применение этой технологии могло бы решить обе эти проблемы. Во-вторых, теоретически ее эффективность может быть очень высокой. Главной проблемой для инженеров микробных топливных элементов являются, и собственно важнейший элемент этого устройства, микробы. И пока микробиологи, получающие многочисленные гранды на исследования, ликуют, писатели-фантасты тоже потирают руки, предвкушая успех книг, посвященных последствиям "выхода в свет" неправильных микроорганизмов. Естественно, что риск вывести что-то такое, что "переваривало" бы не только не нужные отходы, но и что-то ценное, есть. Поэтому в принципе, как и в случае с любыми новыми биотехнологиями, люди относятся к идее носить в кармане коробочку, кишащую бактериями, с опаской.